જો $\alpha $, $\beta$, $\gamma$  એ સમીકરણ ${x^3} - 2{x^2} + 3x - 2 = 0$ ના બીજો હોય તો $\left( {\frac{{\alpha \beta }}{{\alpha  + \beta }} + \frac{{\alpha \gamma }}{{\alpha  + \gamma }} + \frac{{\beta \gamma }}{{\beta  + \gamma }}} \right)$ ની કિમત મેળવો 

  • A

    $\frac{{13}}{4}$

  • B

    $\frac{{25}}{18}$

  • C

    $\frac{{9}}{2}$

  • D

    એક પણ નહી 

Similar Questions

જો $\alpha, \beta$ એ સમીકરણ $x^2-x-1=0$ ના બીજ હોય અને $\mathrm{S}_{\mathrm{n}}=2023 \alpha^{\mathrm{n}}+2024 \beta^{\mathrm{n}}$ હોય, તો :

  • [JEE MAIN 2024]

જો $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ અને $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, હોય તો $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ .......... માટે શકય છે 

જો $\alpha $ અને $\beta $ એ દ્રીઘાત સમીકરણ ${x^2}\,\sin \,\theta  - x\,\left( {\sin \,\theta \cos \,\,\theta  + 1} \right) + \cos \,\theta  = 0\,\left( {0 < \theta  < {{45}^o}} \right)$ ના ઉકેલો હોય અને $\alpha  < \beta $ તો $\sum\limits_{n = 0}^\infty  {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ = ......

  • [JEE MAIN 2019]

જો $\alpha$ અને $\beta$ એ સમીકરણ $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$ નાં ભિન્ન બીજ હોય તો  $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

સમીકરણ $x^2 + 2 | x | -15\geq 0$ નો ઉકેલ કેવી રીતે આપી શકાય ?