સમીકરણ $x^2 + 2 | x | -15\geq 0$ નો ઉકેલ કેવી રીતે આપી શકાય ?
$x\,\, \le \,\, - \,\,\sqrt 3 \,$ અથવા $\,\,x\,\, \ge \,\,\sqrt 3 $
$x\leq -3 $ અથવા $ x \geq 3$
$-3 \leq x\leq 3$
આપેલ પૈકી એકપણ નહિ.
સમીકરણ $x^2 + 5 | x | + 4 = 0$ ના વાસ્તવિક બીજ કયા છે ?
સમીકરણ $x|x+5|+2|x+7|-2=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા ............ છે.
જો $\alpha, \beta$ એ સમીકરણ $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$ ના બીજ હોય તો $\alpha^{8}+\beta^{8}$ ની કિમંત મેળવો.
જો સમીકરણ ${x^2} + \alpha x + \beta = 0$ ના બીજો $\alpha ,\beta $ એવા મળે કે જેથી $\alpha \ne \beta $ અને અસમતા $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ હોય તો
$[0, 5\pi]$ અંતરાલમાં સમીકરણ $3sin^2x - 7sinx + 2 = 0$ ને સમાધાન કરે તેવી $x$ ના મૂલ્યોની સંખ્યા કેટલી થાય ?