यदि $f:R \to R$ तथा $g:R \to R$ इस प्रकार है कि $f(x) = \;|x|$ तथा $g(x) = \;|x|$ प्रत्येक $x \in R$ के लिए, तब $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $
$Z \cup ( - \infty ,\;0)$
$( - \infty ,0)$
$Z$
$R$
समुच्चय $A$ में $3$ तथा $B$ में $4$ अवयव हैं, तब $A$ से $B$ में बनने वाले एकैकी प्रतिचित्रणों की संख्या होगी
माना $f$ एक फलन है जो सभी $x, y \in \mathbb{N}$ के लिए $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ को संतुष्ट करता है एवं $\mathrm{f}(1)=\frac{1}{5}$ है यदि $\sum_{\mathrm{n}=1}^{\mathrm{m}} \frac{\mathrm{f}(\mathrm{n})}{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}=\frac{1}{12}$ हैं, तब $\mathrm{m}$ बराबर है_________.
${2^x} + {2^y} = 2$ द्वारा परिभाषित फलन का डोमेन (प्रान्त) है
इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :
उन बिन्दुओं, जहाँ वक्र
$f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in \mathbb{R}, x$-अक्ष को
काटता है, की संख्या है_______