If $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ for $x \in R$, then $f(2002) = $
$1$
$2$
$3$
$4$
If the domain of the function $f(x)=\log _e$ $\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ is $(\alpha, \beta]$, then the value of $5 \beta-4 \alpha$ is equal to
Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ?
If $\theta$ is small $\&$ positive number then which of the following is/are correct ?
The set of values of $'a'$ for which the inequality ${x^2} - (a + 2)x - (a + 3) < 0$ is satisfied by atleast one positive real $x$ , is
Let a function $f : R \rightarrow R$ is defined such that $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \ \forall x \in R$, then the value of $f(5)$ is-