If $\theta$ is small $\&$ positive number then which of the following is/are correct ?
$\frac{{\sin \,\theta }}{\theta }= 1$
$\frac{{\tan \,\theta }}{\theta } > \frac{{\sin \,\theta }}{\theta }$
$sin \theta < \theta < tan \theta$
$(B)$ or $(C)$ both
The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is
Domain of function $f(x) = log|5{x} - 2x|$ is $x \in R - A$, then $n(A)$ is (where $\{.\}$ denotes fractional part function)
Let $f, g: N -\{1\} \rightarrow N$ be functions defined by $f(a)=\alpha$, where $\alpha$ is the maximum of the powers of those primes $p$ such that $p^{\alpha}$ divides $a$, and $g(a)=a+1$, for all $a \in N -\{1\}$. Then, the function $f+ g$ is.
Domain of the function $f(x) = {\sin ^{ - 1}}(1 + 3x + 2{x^2})$ is
Let $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1),$ where the function $f$ satisfies $f(x + y) = f(x) f(y)$ for all natural numbers $x, y$ and $f(1) = 2.$ Then the natural number $‘ a '$ is