જો $f(x) = \cos (\log x)$, તો $f(x).f(4) - \frac{1}{2}\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right] =$

  • A

    $1$

  • B

    $-1$

  • C

    $0$

  • D

    $ \pm 1$

Similar Questions

વિધેય $f : R \rightarrow  R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ નો વિસ્તારગણ ...... છે 

ધારોકે $f(x)=2 x^n+\lambda, \lambda \in R$ અને $n \in N , f(4)=133$ તો $f(5)=255$, તો $(f(3)-f(2))$ ના બધાજ ધન પૂર્ણાંક ભાજકો નો સરવાળો $..............$ છે.

  • [JEE MAIN 2023]

ધારો કે $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ છે. $n \geq 2$, માટે $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$ પ્રમાણે વ્યાખ્યાયિત કરો.જો $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, જ્યાં $a$ અને $b$ પરસ્પર અવિભાજ્ય છે,તો  $a+b=............$.

  • [JEE MAIN 2023]

જો $f(\theta)$ એ રેખા $( \sqrt {\sin \theta } )x + (  \sqrt {\cos  \theta })y +1 = 0$ નુ ઉંગમબિંદુ થી અંતર હોય તો $f(\theta)$ નો વિસ્તાર મેળવો. 

સાબિત કરો કે $f: R \rightarrow R ,$ $f(x)=[x]$ દ્વારા વ્યાખ્યાયિત મહત્તમ પૂર્ણાક વિધેય $(Greatest\, integer \,function)$ એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. અહીં, $[x]$ એ $x$ થી નાના અથવા $x$ ને સમાન તમામ પૂર્ણાકોમાં મહત્તમ પૂર્ણાક દર્શાવે છે. બીજા શબ્દોમાં $x$ થી અધિક નહિ તેવા પૂર્ણાકોમાં સૌથી મોટો પૂર્ણાક $x$ છે.