यदि वृत्त $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$ द्वारा बिन्दु $P({x_1},{y_1})$ पर अन्तरित कोण $\theta $ हो, तो

  • A

    $\cot \theta = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$

  • B

    $\cot \frac{\theta }{2} = \frac{{\sqrt {{s_1}} }}{{\sqrt {{g^2} + {f^2} - c} }}$

  • C

    $\tan \theta = \frac{{2\sqrt {{g^2} + {f^2} - c} }}{{\sqrt {{s_1}} }}$

  • D

    इनमें से कोई नहीं

Similar Questions

वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण जो अक्षों के साथ ${a^2}$ क्षेत्रफल का त्रिभुज बनाती है, होगा

एक बिंदु $P$ से वत्त $x ^{2}+ y ^{2}-2 x -4 y +4=0$ पर दो स्पर्श रेखाएँ खींची गई हैं। इन स्पर्श रेखाओं के बीच का कोण $\tan ^{-1}\left(\frac{12}{5}\right)$ है, जहाँ $\tan ^{-1}\left(\frac{12}{5}\right) \in$ $(0, \pi)$ है। यदि वत्त का केन्द्र $C$ है तथा ये स्पर्श रेखाएँ वत्त को बिंदुओं $A$ तथा $B$ पर स्पर्श करती है, तो $\triangle PAB$ तथा $\triangle CAB$ के क्षेत्रफलों का अनुपात है

  • [JEE MAIN 2021]

रेखा $(x - a)\cos \alpha  + (y - b)$ $\sin \alpha  = r$, वृत्त ${(x - a)^2} + {(y - b)^2} = {r^2}$ की एक स्पर्श रेखा होगी

रेखा $x + 2y = 3$ के समान्तर, वृत्त ${x^2} + {y^2} - 2x = 0$ के अभिलम्ब का समीकरण है

माना $y=x+2,4 y=3 x+6$ तथा $3 y=4 x+1$ वृत्त $(\mathrm{x}-\mathrm{h})^2+(\mathrm{y} \mathrm{k})^2=\mathrm{r}^2$ की तीन स्पर्श रेखाएँ हैं, तो $\mathrm{h}+\mathrm{k}$ बराबर है :

  • [JEE MAIN 2023]