જો $\tan (\cot x) = \cot (\tan x),$ તો $\sin 2x =$
$(2n + 1)\frac{\pi }{4}$
$\frac{4}{{(2n + 1)\pi }}$
$4\pi (2n + 1)$
એકપણ નહીં.
$\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x} - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ ના $x \in [0,2\pi ]$ માં ઉકેલોની સંખ્યા .......... છે.
સમીકરણ $\sin x=\frac{\sqrt{3}}{2}$ ના મુખ્ય ઉકેલ શોધો.
સમીકરણ $\tan \theta = \cot \alpha $ નો વ્યાપક ઉકેલ મેળવો.
જો $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ અને $x$ એ સમીકરણો $y = 2\left[ x \right] + 2$ અને $y = 3\left[ {x - 2} \right]$નો ઉકેલ છે, જ્યાં $\left[ x \right]$ એ $x$ નો પૂર્ણાક ભાગ દર્શાવે છે તો $a$ =
સમીકરણ $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.