If $\sin 2\theta = \cos \theta ,\,\,0 < \theta < \pi $, then the possible values of $\theta $ are

  • A

    ${90^o},{60^o},{30^o}$

  • B

    ${90^o},{150^o},{60^o}$

  • C

    ${90^o},{45^o},{150^o}$

  • D

    ${90^o},{30^o},{150^o}$

Similar Questions

If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :

  • [JEE MAIN 2018]

The equation $3{\sin ^2}x + 10\cos x - 6 = 0$ is satisfied, if

Number of roots of the equation ${\cos ^2}x + \frac{{\sqrt 3  + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ which lie in the interval $[-\pi,\pi ]$ is

If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is

Let $f(x)=\cos 5 x+A \cos 4 x+B \cos 3 x$ $+C \cos 2 x+D \cos x+E$, and

$T=f(0)-f\left(\frac{\pi}{5}\right)+f\left(\frac{2 \pi}{5}\right)-f\left(\frac{3 \pi}{5}\right)+\ldots+f\left(\frac{8 \pi}{5}\right)-f\left(\frac{9 \pi}{5}\right) \text {. }$Then, $T$

  • [KVPY 2011]