यदि $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$
$ = \tan \alpha \tan \beta \tan \gamma $, तब $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $
$\cot \alpha \cot \beta \cot \gamma $
$\tan \alpha \tan \beta \tan \gamma $
$\cot \alpha + \cot \beta + \cot \gamma $
$\tan \alpha + \tan \beta + \tan \gamma $
निम्नलिखित रेडियन माप के संगत डिग्री माप ज्ञात कीजिए ( $\pi=\frac{22}{7}$ का प्रयोग करें)
$\frac{11}{16}$
निम्नलिखित रेडियन माप के संगत डिग्री माप ज्ञात कीजिए ( $\pi=\frac{22}{7}$ का प्रयोग करें)
$\frac{5 \pi}{3}$
$\cot \frac{\pi}{24}$ का मान है
$\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + ..... + \cos 180^\circ = $
यदि $\theta $ द्वितीय चतुर्थाशं में हो, तो $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} = $