If $\tan \theta = \frac{a}{b},$ then $\frac{{\sin \theta }}{{{{\cos }^8}\theta }} + \frac{{\cos \theta }}{{{{\sin }^8}\theta }} = $

  • A

    $ \pm \frac{{{{({a^2} + {b^2})}^4}}}{{\sqrt {{a^2} + {b^2}} }}\left( {\frac{a}{{{b^8}}} + \frac{b}{{{a^8}}}} \right)$

  • B

    $ \pm \frac{{{{({a^2} + {b^2})}^4}}}{{\sqrt {{a^2} + {b^2}} }}\left( {\frac{a}{{{b^8}}} - \frac{b}{{{a^8}}}} \right)$

  • C

    $ \pm \frac{{{{({a^2} - {b^2})}^4}}}{{\sqrt {{a^2} + {b^2}} }}\left( {\frac{a}{{{b^8}}} + \frac{b}{{{a^8}}}} \right)$

  • D

    $ \pm \frac{{{{({a^2} - {b^2})}^4}}}{{\sqrt {{a^2} - {b^2}} }}\left( {\frac{a}{{{b^8}}} - \frac{b}{{{a^8}}}} \right)$

Similar Questions

If $\cos \theta = \frac{1}{2}\left( {x + \frac{1}{x}} \right)$, then $\frac{1}{2}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) = $

The value of $\tan ( - 945^\circ )$ is

If $2y\,\cos \theta = x\sin \,\theta {\rm{ and }}2x\sec \theta - y\,{\rm{cosec}}\,\theta = 3,$ then ${x^2} + 4{y^2} = $

Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$

If $x{\sin ^3}\alpha + y{\cos ^3}\alpha = \sin \alpha \cos \alpha $ and $x\sin \alpha - y\cos \alpha = 0,$ then ${x^2} + {y^2} = $