જો $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; તો $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} - {b_3}{c_2}}&{{c_2}{a_3} - {c_3}{a_2}}&{{a_2}{b_3} - {a_3}{b_2}}\\{{b_3}{c_1} - {b_1}{c_3}}&{{c_3}{a_1} - {c_1}{a_3}}&{{a_3}{b_1} - {a_1}{b_3}}\\{{b_1}{c_2} - {b_2}{c_1}}&{{c_1}{a_2} - {c_2}{a_1}}&{{a_1}{b_2} - {a_2}{b_1}}\end{array}\,} \right|$ = . . .
$5$
$25$
$125$
$0$
જો સુરેખ સમીકરણોની સંહતિ $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ;કે જ્યાં $a, b, c \in R$ એ ભિન્ન શૂન્યતર સંખ્યાઓ હોય તો . . . .
જો સમીકરણ સંહતિ $2 x+y-z=3$ ; $x-y-z=\alpha$ ; $3 x+3 y+\beta z=3$ ના ઉકેલની સંખ્યા અનંત છે તો $\alpha+\beta-\alpha \beta$ ની કિમંત મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,તો $k$ ની કિમત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}\,} \right|$ = . . . .
જો $a,b,c$ એ સમાંતર શ્રેણીના ${p^{th}},{q^{th}}{r^{th}}$ માં પદ હોય તો ,$\left| {\,\begin{array}{*{20}{c}}a&p&1\\b&q&1\\c&r&1\end{array}\,} \right| = $