જો $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ તો $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$ = . . .
${\Delta ^2}$
$4\Delta $
$3\Delta $
એકપણ નહી.
સમીકરણની સંહતિ $x + ky - z = 0,3x - ky - z = 0$ અને $x - 3y + z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $k$ ની કિમત મેળવો.
જો $a, b, c$ એ ત્રણ સંકર સંખ્યા છે કે જેથી $a^2 + b^2 + c^2 = 0$ અને $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ તો $K$ ની કિમંત મેળવો.
$-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ અંતરાલમાં $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ ના વાસ્તવિક ભિન્ન બીજની સંખ્યા મેળવો.
$A,B,C$ અને $P,Q,R$ ની દરેક કિમંત માટે , $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right| =. . . $
જો રેખીય સમીકરણો $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$ અનંત ઉકેલ ધરાવે છે તો $\lambda + \mu $ ની કિમંત મેળવો.