If $a,b,c$ are different and $\left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} - 1}\\b&{{b^2}}&{{b^3} - 1}\\c&{{c^2}}&{{c^3} - 1}\end{array}\,} \right| = 0$, then
$a + b + c = 0$
$abc = 1$
$a + b + c = 1$
$ab + bc + ca = 0$
The determinant $\left| {\begin{array}{*{20}{c}}{^x{C_1}}&{^x{C_2}}&{^x{C_3}}\\ {^y{C_1}}&{^y{C_2}}&{^y{C_3}}\\{^z{C_1}}&{^z{C_2}}&{^z{C_3}}\end{array}} \right|$ $=$
If $\mathrm{a, b, c}$ are in $\mathrm{A.P}$, find value of
$\left|\begin{array}{ccc}
2 y+4 & 5 y+7 & 8 y+a \\
3 y+5 & 6 y+8 & 9 y+b \\
4 y+6 & 7 y+9 & 10 y+c
\end{array}\right|$
If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, then $a,b,c$ are in
If $a+x=b+y=c+z+1,$ where $a, b, c, x, y, z$ are non-zero distinct real numbers, then $\left|\begin{array}{lll}x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c\end{array}\right|$ is equal to