If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, then $a,b,c$ are in

  • A

    $A. P.$

  • B

    $G. P.$

  • C

    $H. P.$

  • D

    None of these

Similar Questions

If ${a_1},{a_2},{a_3},........,{a_n},......$ are in G.P. and ${a_i} > 0$  for each $i$, then the value of the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|$ is equal to

If $\mathrm{a, b, c},$ are in $\mathrm{A.P}$, then the determinant

$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$ is

By using properties of determinants, show that:

$\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$

The value of $\theta$ lying between $\theta = 0$ and $\theta = \pi /2$ and satisfying the equation : $\left| {\,\begin{array}{*{20}{c}} {1\,\, + \,\,{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{1\,\, + \,\,{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{1\,\, + \,\,4\,\sin \,4\,\theta } \end{array}\,} \right|$ $= 0$ are :

Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$