If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be

  • [IIT 1984]
  • A

    $2, 1$

  • B

    $5,\frac{1}{5}$

  • C

    $7,\frac{1}{7}$

  • D

    None of these

Similar Questions

If $x,\;y,\;z$ are real and distinct, then $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ is always

  • [IIT 1979]

Let $P(x) = x^3 - ax^2 + bx + c$ where $a, b, c \in R$ has integral roots such that $P(6) = 3$, then $' a '$ cannot be equal to

The roots of $|x - 2{|^2} + |x - 2| - 6 = 0$are

Consider the equation ${x^2} + \alpha x + \beta  = 0$ having roots $\alpha ,\beta $ such that $\alpha  \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then

If $|x - 2| + |x - 3| = 7$, then $x =$