If $S$ is a set of $P(x)$ is polynomial of degree $ \le 2$ such that $P(0) = 0,$$P(1) = 1$,$P'(x) > 0{\rm{ }}\forall x \in (0,\,1)$, then

  • [IIT 2005]
  • A

    $S = 0$

  • B

    $S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,\infty )$

  • C

    $S = ax + (1 - a){x^2}{\rm{ }}\forall a \in R$

  • D

    $S = ax + (1 - a){x^2}{\rm{ }}\forall a \in (0,2)$

Similar Questions

Let $f(x)={{x}^{2}}-x+k-2,k\in R$ then the complete set of values of $k$ for which $y=\left| f\left( \left| x \right| \right) \right|$ is non-derivable at $5$ distinict points is 

If $\alpha, \beta $ and $\gamma$ are the roots of the equation $2{x^3} - 3{x^2} + 6x + 1 = 0$, then ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ is equal to

The sum of all the solutions of the equation $(8)^{2 x}-16 \cdot(8)^x+48=0$ is :

  • [JEE MAIN 2024]

The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is

The number of real solutions of the equation $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ is..........

  • [JEE MAIN 2022]