Let $f(x)={{x}^{2}}-x+k-2,k\in R$ then the complete set of values of $k$ for which $y=\left| f\left( \left| x \right| \right) \right|$ is non-derivable at $5$ distinict points is 

  • A

    $(1,4)$

  • B

    $\left( 0,\frac{9}{4} \right)$

  • C

    $\left( -\infty ,2 \right)$

  • D

    $\left( 2,\frac{9}{4} \right)$

Similar Questions

Let $f: R -\{0\} \rightarrow(-\infty, 1)$ be a polynomial of degree $2$ , satisfying $f( x ) f\left(\frac{1}{ x }\right)=f( x )+f\left(\frac{1}{ x }\right)$. If $f(K)=-2 K$, then the sum of squares of all possible values of $K$ is :

  • [JEE MAIN 2025]

If $x+\frac{1}{x}=a, x^2+\frac{1}{x^3}=b$, then $x^3+\frac{1}{x^2}$ is

  • [KVPY 2011]

If the equation $\frac{1}{x} + \frac{1}{{x - 1}} + \frac{1}{{x - 2}} = 3{x^3}$ has $k$ real roots, then $k$ is equal to -

If $a,b,c$ are real and ${x^3} - 3{b^2}x + 2{c^3}$ is divisible by $x - a$ and$x - b$, then

The sum of all the solutions of the equation $(8)^{2 x}-16 \cdot(8)^x+48=0$ is :

  • [JEE MAIN 2024]