If $a,\;b,\;c$ are in $A.P.$, then ${10^{ax + 10}},\;{10^{bx + 10}},\;{10^{cx + 10}}$ will be in
$A.P.$
$G.P.$ only when $x > 0$
$G.P.$ for all values of $x$
$G.P.$ for $x < 0$
The sum of infinite terms of the geometric progression $\frac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}},\frac{1}{{2 - \sqrt 2 }},\frac{1}{2}.....$ is
The first term of a $G.P.$ is $1 .$ The sum of the third term and fifth term is $90 .$ Find the common ratio of $G.P.$
Find the sum of first $n$ terms and the sum of first $5$ terms of the geometric
series $1+\frac{2}{3}+\frac{4}{9}+\ldots$
If $2^{10}+2^{9} \cdot 3^{1}+28 \cdot 3^{2}+\ldots+2 \cdot 3^{9}+3^{10}=S -211$ then $S$ is equal to
Let $P(x)=1+x+x^2+x^3+x^4+x^5$. What is the remainder when $P\left(x^{12}\right)$ is divided by $P(x)$ ?