Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is
$3,9,3 $ and $ 9$
$3,4,5 $ and $ 6$
$3,6,4 $ and $ 8$
$7,8,4 $ and $ 5$
$150$ workers were engaged to finish a piece of work in a certain number of days. $4$ workers dropped the second day, $4$ more workers dropped the third day and so on. It takes eight more days to finish the work now. The number of days in which the work was completed is
Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.
If the sum of three numbers of a arithmetic sequence is $15$ and the sum of their squares is $83$, then the numbers are
A farmer buys a used tractor for $Rs$ $12000 .$ He pays $Rs$ $6000$ cash and agrees to pay the balance in annual instalments of $Rs$ $500$ plus $12 \%$ interest on the unpaid amount. How much will the tractor cost him?