If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is
$\frac{{n - 1}}{{{a_1}{a_{n + 1}}}}$
$\frac{1}{{{a_1}{a_{n + 1}}}}$
$\frac{{n + 1}}{{{a_1}{a_{n + 1}}}}$
$\frac{n}{{{a_1}{a_{n + 1}}}}$
The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is
If $1, \log _{10}\left(4^{x}-2\right)$ and $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ are in
arithmetic progression for a real number $x$ then the value of the determinant $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ is equal to ...... .
The sum of all those terms, of the anithmetic progression $3,8,13, \ldots \ldots .373$, which are not divisible by $3$,is equal to $.......$.
Insert $6$ numbers between $3$ and $24$ such that the resulting sequence is an $A.P.$