Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :
If the ${p^{th}},\;{q^{th}}$ and ${r^{th}}$ term of an arithmetic sequence are $a , b$ and $c$ respectively, then the value of $[a(q - r)$ + $b(r - p)$ $ + c(p - q)] = $
If the sum of three numbers in $A.P.,$ is $24$ and their product is $440,$ find the numbers.
Let ${T_r}$ be the ${r^{th}}$ term of an $A.P.$ for $r = 1,\;2,\;3,....$. If for some positive integers $m,\;n$ we have ${T_m} = \frac{1}{n}$ and ${T_n} = \frac{1}{m}$, then ${T_{mn}}$ equals
Let $a_1, a_2, \ldots \ldots, a_n$ be in A.P. If $a_5=2 a_3$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to $..........$.