If $z$ is a complex number satisfying $|z|^2 - |z| - 2 < 0$, then the value of $|z^2 + z sin \theta|$ , for all values of $\theta$ , is

  • A

    equal to $4$

  • B

    equal to $6$

  • C

    more than $6$

  • D

    less than $6$

Similar Questions

The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is

Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.

If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is

Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$

Find the real numbers $x$ and $y$ if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$