If $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ then
$|z|\, = 1,\,\,\,\,arg\,z = \frac{\pi }{4}$
$|z|\, = 1,arg\,z = \frac{\pi }{6}$
$|z|\, = \frac{{\sqrt 3 }}{2},\,arg\,z = \frac{{5\pi }}{{24}}$
$|z|\, = \frac{{\sqrt 3 }}{2},\,\,arg\,z = {\tan ^{ - 1}}\frac{1}{{\sqrt 2 }}$
If $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ then the value of $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=
Let $Z$ and $W$ be complex numbers such that $\left| Z \right| = \left| W \right|,$ and arg $Z$ denotes the principal argument of $Z.$
Statement $1:$ If arg $Z+$ arg $W = \pi ,$ then $Z = -\overline W $.
Statement $2:$ $\left| Z \right| = \left| W \right|,$ implies arg $Z-$ arg $\overline W = \pi .$
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is
Find the modulus and argument of the complex numbers:
$\frac{1}{1+i}$
$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $