જો $A = [(x,\,y):{x^2} + {y^2} = 25]$ અને $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, તો $A \cap B$ માં . .. બિંદુ હોય .
એક બિંદુ
ત્રણ બિંદુ
બે બિંદુઓ
ચાર બિંદુ
જો ઉપવલય $3x^2 + 4y^2 = 12$ ના બિંદુ $P$ આગળનો અભિલંબ રેખા $2x + y = 4$ ને સમાંતર અને બિંદુ $P$ આગળનો સ્પર્શક બિંદુ $Q(4, 4)$ માંથી પસાર થતો હોય તો $PQ$ =
જો બે ભિનન શાંકવો $x^2+y^2=4 b$ અને $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ ના છેદ બિંદુઓ, વક્ર $y^2=3 x^2$ પર આવેલા હોય, તો આ છેદ બિંદુઓ દ્વારા રચાયેલ લંબચોરસના ક્ષેત્રફળના $3 \sqrt{3}$ ઘણા........................... થાય.
ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ ના કોઈ પણ નાભિબિંદુમાંથી ઉપવલયના કોઈ પણ સ્પર્શક ને લંબપાદ પરના બિંદુપથ પરનું નીચેનામાંથી ક્યું બિંદુ આવેલ છે?
ઉપવલય $4{x^2} + 9{y^2} = 1$ પરના . . . . . બિંદુથી દોરવામાં આવેલ સ્પર્શકએ રેખા $8x = 9y$ ને સમાંતર થાય.
બે ગણ $A$ અને $B$ નીચે પ્રમાણે છે: $A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1$ અને $\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ તો : . . . . .