જો $A = [(x,\,y):{x^2} + {y^2} = 25]$ અને $B = [(x,\,y):{x^2} + 9{y^2} = 144]$, તો $A \cap B$ માં . .. બિંદુ હોય .
એક બિંદુ
ત્રણ બિંદુ
બે બિંદુઓ
ચાર બિંદુ
જો ઉગમ બિંદુ પરથી ઉપવલય $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$ નાં અભિલંબનું મહત્તમ અંતર $1$ હોય,તો ઉપવલયની ઉત્કેન્દ્રતા $.........$ છે.
ધારોકે કેન્દ્ર $(1,0)$ અને નાભિલંબની લંબાઈ $\frac{1}{2}$ હોય તેવા ઊપવલયની પ્રધાન અક્ષ -અક્ષ પર છે જો તેની ગૌણ અક્ષ નાભિઓ પર $60^{\circ}$ ખૂણો આંતરે, તો તેની પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈઓના સરવાળાનો વર્ગ $......$ થાય.
જો $3 x+4 y=12 \sqrt{2}$ એ કોઈક $a \in \mathrm{R},$ માટે ઉપવલય $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{9}=1$ નો સ્પર્શક હોય તો બંને નાભી વચ્ચેનું અંતર મેળવો.
જો અતિવલય $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ પરના બે બિંદુઓ $P(a\sec \theta ,\;b\tan \theta )$ અને $Q(a\sec \phi ,\;b\tan \phi )$ ,કે જયાં $\theta + \phi = \frac{\pi }{2}$ છે.જો $(h, k)$ એ બિંદુઓ $P$ અને $Q$ આગળના અભિલંબનું છેદબિંદુ હોય તો $k$ ની કિંમત મેળવો.
રેખા $x=8$એ ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની નાભિ $(2,0)$ને સુસંગત નિયામિકા છે.પ્રથમ ચરણમાં $E$ના બિંદુ $P$ આગળનો સ્પર્શક જો બિંદુ $(0,4 \sqrt{3})$ માંથી પસાર થતો હોય અને $x-$અક્ષને $Q$ બિંદુ આગળ છેદતો હોય,તો $(3PQ)^2=.........$