Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} = \{ 2,3,4,5,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} = \{ 7,8,9\} $
$A \cup B=\{2,3,4,5,6,7,8,9\}$
$\therefore A \cup B = \{ x:x \in N$ and $1\, < \,x\, < \,10\} $
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$B-A$
State whether each of the following statement is true or false. Justify you answer.
$\{2,6,10,14\}$ and $\{3,7,11,15\}$ are disjoint sets.
Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-A$
If $\mathrm{R}$ is the set of real numbers and $\mathrm{Q}$ is the set of rational numbers, then what is $\mathrm{R - Q} ?$