If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to

  • A

    $n(A) + n(B)$

  • B

    $n(A) + n(B) - n(A \cap B)$

  • C

    $n(A) + n(B) + n(A \cap B)$

  • D

    $n(A)\,n(B)$

Similar Questions

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$B \cap D$

Find the union of each of the following pairs of sets :

$A=\{1,2,3\}, B=\varnothing$

If the sets $A$ and $B$ are defined as $A = \{ (x,\,y):y = {1 \over x},\,0 \ne x \in R\} $ $B = \{ (x,y):y =  - x,x \in R\} $, then

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$B-A$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap \left( {B \cup C} \right)$