If $A$ and $B$ are not disjoint sets, then $n(A \cup B)$ is equal to
$n(A) + n(B)$
$n(A) + n(B) - n(A \cap B)$
$n(A) + n(B) + n(A \cap B)$
$n(A)\,n(B)$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap \left( {B \cup C} \right)$
Let $A$ and $B$ be two sets. Then
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$A \cap C$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$B \cap D$
If $A, B$ and $C$ are non-empty sets, then $(A -B) \cup (B -A)$ equals