If $A$ and $B$ are two sets then $(A -B) \cup (B -A) \cup (A \cap B)$ is equal to
$A \cup B$
$A \cap B$
$A$
$B'$
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap B$
$A$ and $B$ are two subsets of set $S$ = $\{1,2,3,4\}$ such that $A\ \cup \ B$ = $S$ , then number of ordered pair of $(A, B)$ is
If $A$ and $B$ are any two sets, then $A \cup (A \cap B) $ is equal to
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$C-B$
For any sets $\mathrm{A}$ and $\mathrm{B}$, show that
$P(A \cap B)=P(A) \cap P(B).$