If $A$ and $B$ are two sets then $(A -B) \cup (B -A) \cup (A \cap B)$ is equal to

  • A

    $A \cup B$

  • B

    $A \cap B$

  • C

    $A$

  • D

    $B'$

Similar Questions

If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ = . . . . .

  • [JEE MAIN 2014]

Using that for any sets $\mathrm{A}$ and $\mathrm{B},$

$A \cap(A \cup B)=A$

Show that if $A \subset B,$ then $(C-B) \subset( C-A)$

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find

$C \cap D$

If $A  \cap B = B$, then