If $A=\{x \in R:|x|<2\}$ and $B=\{x \in R:|x-2| \geq 3\}$ then
$A \cup B=R-(2,5)$
$A \cap B=(-2,-1)$
$B-A=R-(-2,5)$
$A-B=[-1,2)$
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$A \cap C$
Find the intersection of each pair of sets :
$X=\{1,3,5\} Y=\{1,2,3\}$
If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$C \cap D$
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$
If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$X \cap Y$