If ${N_a} = [an:n \in N\} ,$ then ${N_5} \cap {N_7} = $

  • A

    ${N_7}$

  • B

    $N$

  • C

    ${N_{35}}$

  • D

    ${N_5}$

Similar Questions

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find

$C \cap D$

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find

$A \cap C$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$A \cap D$

Let $A$ and $B$ be subsets of a set $X$. Then

Show that $A \cup B=A \cap B$ implies $A=B$.