જો બે ગણ $A$ અને $B$ આપેલ હોય તો $A \cap (B -A)$ મેળવો.
$\phi $
$A$
$B$
એકપણ નહી
ધારો કે $A :\{1,2,3,4,5,6,7\}$. ગણ $B =\{ T \subseteq A$ : $1 \notin T$ અથવા $2 \in T \}$ મુજબ છે અને ગણ $C = \{ T \subseteq A : T$ કે જેથી ગણ $T$ ના બધા ઘટકોનો સરવાળો અવિભાજ્ય છે $\}$. તો ગણ $B \cup C$ ના ઘટકોનો સંખ્યા $\dots\dots$ થાય.
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap \left( {B \cup C} \right)$
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $D-A$
જો ${N_a} = \{ an:n \in N\} ,$ તો ${N_3} \cap {N_4} = $
બે ગણું $X$ અને $Y$ એવા છે કે ગણ $X$ માં $40$ ઘટકો, $X \cup Y$ માં $60$ ઘટકો અને $X$ $\cap\, Y$ માં $10$ ઘટકો હોય, તો $Y$ માં કેટલા ઘટકો હશે?