If $A$ and $B$ are sets, then $A \cap (B -A)$ is
$\phi $
$A$
$B$
None of these
If $A =$ [$x:x$ is a multiple of $3$] and $B =$ [$x:x$ is a multiple of $5$], then $A -B$ is ($\bar A$ means complement of $A$)
Let $A$ and $B$ be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set $X ,$ show that $A = B$
( Hints $A = A \cap (A \cup X),B = B \cap (B \cup X)$ and use Distributive law )
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap C \cap D$
Let $A$ and $B$ be two sets such that $n(A) = 0.16,\,n(B) = 0.14,\,n(A \cup B) = 0.25$. Then $n(A \cap B)$ is equal to
If $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\},$ then $(A \cup B) \cap C$ is