Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\} .$ Find $A-B$ and $B-A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have, $A-B=\{1,3,5\},$ since the elements $1,3,5$ belong to $A$ but not to $B$ and $B - A =\{8\},$ since the element $8$ belongs to $B$ and not to $A$. We note that $A-B \neq B-A$

Similar Questions

If $\mathrm{R}$ is the set of real numbers and $\mathrm{Q}$ is the set of rational numbers, then what is $\mathrm{R - Q} ?$

If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find

$B \cap D$

If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find

$A-C$

If $A, B$ and $C$ are non-empty sets, then $(A -B)  \cup (B -A)$ equals 

The shaded region in given figure is-