જો $\vec{A}+\vec{B}+\vec{C}=0$ હોય તો $\vec{A} \times \vec{B}$ શું થાય?
$\vec{C} \times \vec{B}$
$\vec{B} \times \vec{C}$
$\vec{A} \times \vec{C}$
શૂન્ય
$\mathop {\text{A}}\limits^ \to \,\, = \,\,\hat iA\cos \theta \,\, + \;\,\hat jA\sin \theta ,$ જે સદીશ છે બીજો સદીશ $\mathop B\limits^ \to $ જે $\mathop A\limits^ \to $ ને લંબ હોય તો .... થાય.
સદીશ $\mathop {\text{A}}\limits^ \to \,\, = \,\,4\hat i\,\, + \;\,3\hat j\,\, + \;\,6\hat k$ અને $\mathop B\limits^ \to \,\, = \,\, - \hat i\,\, + \;\,3\hat j\,\, - \,\,8\hat k$ નો પરિણમી સદીશ એ એક્મ સદીશને સમાંતર હોય તો ,$\vec R$ ........
કેટલાક સદિશોના પરિણામીનો $x$ ઘટક.......$(a)$ એ સદિશોના $x$ ઘટકના સરવાળા જેટલો હોય છે. $(b)$ સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ ઓછો હોય છે. $(c)$ સદિશોના મૂલ્યના સરવાળા કરતાં કદાચ વધારે હોય છે. $(d)$ સદિશોના મૂલ્યના સરવાળા જેટલો હોય છે.
સદીશ ${\rm{\hat i}}\,\, + \,\,{\rm{\hat j}}\,\, + \;\,\sqrt {\rm{2}} \,\,\hat k$ નો દિશાકીય $\cos ine .......$ હોય.