જો $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, હોય તો,
$\vec{P}=\overrightarrow{0}$
$\vec{Q}=\overrightarrow{0}$
$|\vec{P}|=1$
$|\vec{Q}|=1$
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $a$ અને તેનું પરિકેન્દ્ર $O$ છે. If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ હોય તો $n =....$
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
આકૃતિમાં ત્રણ સદિશો$\mathop {\,a}\limits^ \to \,,\,\mathop {\rm{b}}\limits^ \to \,\,$ અને $ \,\mathop {\rm{c}}\limits^ \to \,$આપેલી જ્યાં $R$ એ $PQ$ નું મધ્યબિંદુ છે તો નીચેના પૈકી કયો સંબંધ સાચો છે ?
જો $\,{\rm{|}}\mathop {\rm{A}}\limits^ \to \,\, + \;\,\mathop B\limits^ \to \,|\,\, = \,\,\,{\rm{|}}\mathop {\rm{A}}\limits^ \to \,\, - \;\,\mathop B\limits^ \to \,|\,$ હોય $\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો ........ $^o$