બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
$R =\sqrt{ A ^{2}+ B ^{2}+2 ABcos \theta}$
જો $\cos \theta=1\Rightarrow \theta=0^{\circ}$ હોય, તો $R$ મહત્તમ મળે.
$\therefore R _{\max }= A + B$
બે સદિશોના મૂલ્યો અનુક્રમે $8$ એકમ અને $6$ એકમ છે. જો આ બે સદિશો વચ્ચેનો ખૂણો
$(i)\,\theta = 0^o$,$(ii)\,\theta = 180^o$ $(iii)\,\theta = 90^o$ $(iv)\,\theta = 120^o$ હોય, તો આ સદિશના પરિણામી સદિશનું મૂલ્ય જણાવો.
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $a$ અને તેનું પરિકેન્દ્ર $O$ છે. If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ હોય તો $n =....$
નીચે દર્શાવેલ અસમતાઓ ભૌમિતિક કે અન્ય કોઈ રીતે સાબિત કરો :
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
તેમાં સમતાનું ચિહ્ન ક્યારે લાગુ પડે છે ?
અસમાન મૂલ્યના ત્રણ સદિશોનો પરિણામી સદિશ શૂન્ય સદિશ હોઈ શકે ?
$3P$ અને $2P$ નું પરિણામી $R$ છે.જો પ્રથમ બળ બમણું કરતાં પરિણામી બમણું થાય,તો બંને બળ વચ્ચેનો ખૂણો ........... $^o$ હશે.