If $\vec{A}$ and $\vec{B}$ are two vectors satisfying the relation $\vec{A} . \vec{B}=[\vec{A} \times \vec{B}]$. Then the value of $[\vec{A}-\vec{B}]$. will be :

  • [JEE MAIN 2021]
  • A

    $\sqrt{A^{2}+B^{2}-\sqrt{2} A B}$

  • B

    $\sqrt{A^{2}+B^{2}}$

  • C

    $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$

  • D

    $\sqrt{A^{2}+B^{2}+\sqrt{2} A B}$

Similar Questions

The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$

  • [NEET 2017]

Write the distributive law for the product of two vectors. 

If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors

The diagonals of a parallelogram are $2\,\hat i$ and $2\hat j.$What is the area of the parallelogram.........$units$

For any two vectors $\overrightarrow A $ and $\overrightarrow B $, if $\overrightarrow A \,.\,\overrightarrow B = \,\,|\overrightarrow A \times \overrightarrow B |,$ the magnitude of $\overrightarrow C = \overrightarrow A + \overrightarrow B $ is equal to