For any two vectors $\overrightarrow A $ and $\overrightarrow B $, if $\overrightarrow A \,.\,\overrightarrow B = \,\,|\overrightarrow A \times \overrightarrow B |,$ the magnitude of $\overrightarrow C = \overrightarrow A + \overrightarrow B $ is equal to
$\sqrt {{A^2} + {B^2}} $
$A + B$
$\sqrt {{A^2} + {B^2} + \frac{{AB}}{{\sqrt 2 }}} $
$\sqrt {{A^2} + {B^2} + \sqrt 2 \times AB} $
Obtain the scalar product of unit vectors in Cartesian co-ordinate system.
What is the product of two vectors if they are parallel or antiparallel ?
Define the scalar product and obtain the magnitude of a vector from it. Mention the direction of scalar product.
Find the angle between two vectors $\vec A = 2\hat i + \hat j - \hat k$ and $\vec B = \hat i - \hat k$ ....... $^o$
If $\overrightarrow A \times \overrightarrow B=\overrightarrow B \times \overrightarrow A$ then the angle between $\overrightarrow A$ and $\overrightarrow B$ is