If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $[1,3]$
$[1,3]$ and $[1,3]$
$[1,3]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$
If a number of ellipse be described having the same major axis $2a$ but a variable minor axis then the tangents at the ends of their latera recta pass through fixed points which can be
Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$
The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is