Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$
$0$
$\frac{1}{{\sqrt 2 }}$
$1$
${\kern 1pt} \sqrt 2 $
The eccentricity of the ellipse $25{x^2} + 16{y^2} = 100$, is
Let $S$ and $S\,'$ be the foci of an ellipse and $B$ be any one of the extremities of its minor axis. If $\Delta S\,'BS$ is a right angled triangle with right angle at $B$ and area $(\Delta S\,'BS) = 8\,sq.$ units, then the length of a latus rectum of the ellipse is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
The line $x\cos \alpha + y\sin \alpha = p$ will be a tangent to the conic $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if
The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is