If $\overrightarrow{ P } \times \overrightarrow{ Q }=\overrightarrow{ Q } \times \overrightarrow{ P },$ the angle between $\overrightarrow{ P }$ and $\overrightarrow{ Q }$ is $\theta\left(0^{\circ} < \theta < 360^{\circ}\right) .$ The value of $\theta$ will be ........
$90$
$135$
$180$
$45$
The angle between two vectors $ - 2\hat i + 3\hat j + \hat k$ and $\hat i + 2\hat j - 4\hat k$ is ....... $^o$
The resultant of the two vectors having magnitude $2$ and $3$ is $1$. What is their cross product
If $\vec{A}$ and $\vec{B}$ are two vectors satisfying the relation $\vec{A} . \vec{B}=[\vec{A} \times \vec{B}]$. Then the value of $[\vec{A}-\vec{B}]$. will be :
Two vectors $\overrightarrow A $ and $\overrightarrow B $ are at right angles to each other, when