જો $\tan A =\cot B$ હોય, તો સાબિત કરો કે, $A + B =90^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that,

$\tan A =\cot B$

$\tan A=\tan \left(90^{\circ}-B\right)$

$A=90^{\circ}-B$

$A+B=90^{\circ}$

Similar Questions

$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$

જો $\tan ( A + B )=\sqrt{3}$ અને $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B ,$ તો $A$ અને $B$ શોધો.

 

$\triangle$ $PQR$માં, $Q$ કાટખૂણો છે (જુઓ આકૃતિ). $PQ = 3$ સેમી અને $PR = 6$ સેમી હોય, તો $\angle QPR$ અને $\angle PRQ$ શોધો.

કિંમત શોધો :

$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$

જો $3 \cot A=4$ હોય, તો નક્કી કરો કે $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ છે કે નહિ.