यदि $\angle A$ और $\angle B$ न्यून कोण हो, जहाँ $\cos A =\cos B ,$ तो दिखाइए कि $\angle A =\angle B$
Let us consider a triangle $ABC$ in which $CD \perp AB$.
It is given that,
$\cos A=\cos B$
$\Rightarrow \frac{A D}{A C}=\frac{B D}{B C}$
$\Rightarrow \frac{A D}{B D}=\frac{A C}{B C}$
Let $\frac{A D}{B D}=\frac{A C}{B C}=k$
$\Rightarrow AD =k BD \ldots(1)$
And, $A C=k B C \ldots(2)$
Using Pythagoras theorem for triangles $CAD$ and $CBD,$ we obtain
$CD ^{2}= AC ^{2}- AD ^{2} \ldots(3)$
And, $CD ^{2}= BC ^{2}- BD ^{2} \ldots(4)$
From equations $( 3 )$ and $(4),$ we obtain
$AC ^{2}- AD ^{2}= BC ^{2}- BD ^{2}$
$\Rightarrow(k BC )^{2}-(k BD )^{2}= BC ^{2}- BD ^{2}$
$\Rightarrow k^{2}\left(B C^{2}-B D^{2}\right)=B C^{2}-B D^{2}$
$\Rightarrow k^{2}=1$
$\Rightarrow k=1$
Putting this value in equation $(2),$ we obtain
$AC = BC$
$\Rightarrow \angle A=\angle B$ (Angles opposite to equal sides of a triangle)
निम्नलिखित का मान निकालिए:
$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
यदि $\tan A =\frac{4}{3},$ तो कोण $A$ के अन्य त्रिकोणमितीय अनुपात ज्ञात कीजिए।
$\sin 2 A =2 \sin A$ तब सत्य होता है, जबकि $A$ बराबर है :
$\Delta OPQ$ में, जिसका कोण $P$ समकोण है $, \quad OP =7\, cm$ अंर $OQ - PQ =1 \,cm$ $($ देखिए आकृति $),$ $\sin Q$ और $\cos Q$ के मान ज्ञात कीजिए।