જો $\sin A =\frac{3}{4}$ હોય, તો $\cos A$ અને $\tan A$ ની ગણતરી કરો.
Let $\triangle ABC$ be a right-angled triangle, right-angled at point $B$.
Given that,
$\sin A=\frac{3}{4}$
$\frac{B C}{A C}=\frac{3}{4}$
Let $BC$ be $3 k$. Therefore, $AC$ will be $4 k,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC$, we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$(4 k)^{2}= AB ^{2}+(3 k)^{2}$
$16 k^{2}-9 k^{2}=A B^{2}$
$7 k^{2}=A B^{2}$
$A B=\sqrt{7} k$
$\cos A=\frac{\text { Side adjacent to } \angle A}{\text { Hypotenuse }}$
$=\frac{A B}{A C}=\frac{\sqrt{7 }k}{4 k}=\frac{\sqrt{7}}{4}$
$\tan A=\frac{\text { Side opposite to } \angle A}{\text { Side adjacent to } \angle A}$
$=\frac{B C}{A B}=\frac{3 k}{\sqrt{7} k}=\frac{3}{\sqrt{7}}$
કિંમત શોધો :
$\cos 48^{\circ}-\sin 42^{\circ}$
$\triangle PQR$માં $\angle Q$ કાટખૂણો છે અને $PR + QR = 25$ સેમી અને $PQ = 5$ સેમી હોય, તો $\sin P, \cos P$ અને $\tan$ $P$ શોધો.
નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
$\theta$ ના દરેક મૂલ્ય માટે $\sin \theta=\cos \theta$ થાય.
જો $\tan A=\frac{4}{3},$ હોય, તો $\angle A$ ના અન્ય ત્રિકોણમિતીય ગુણોત્તરો શોધો.
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$