જો $\left| {\vec A } \right|\, = \,2$ અને $\left| {\vec B } \right|\, = \,4$ હોય, તો કોલમ $-II$ માં આપેલા ખૂણાને અનુરૂપ કોલમ $-I$ માં આપેલા યોગ્ય સંબંધ સાથે જોડો.
કોલમ $-I$ | કોલમ $-II$ |
$(a)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,0$ | $(i)$ $\theta = \,{30^o}$ |
$(b)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,8$ | $(ii)$ $\theta = \,{45^o}$ |
$(c)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4$ | $(iii)$ $\theta = \,{90^o}$ |
$(d)$ $\left| {\vec A \, \times \,\,\vec B } \right|\, = \,\,4\sqrt 2$ | $(iv)$ $\theta = \,{0^o}$ |
$(a)$ $|\overrightarrow{ A } \times \overrightarrow{ B }|= AB \sin \theta$
$\therefore 0=2 \times 4 \times \sin \theta$
$\therefore 0=\sin \theta$
$\therefore \theta=0^{\circ}$ તેથી $(a-iv)$
$(b)$ $|\vec{A} \times \vec{B}|=A B \sin \theta$
$\therefore 8=2 \times 4 \times \sin \theta$
$\therefore 1=\sin \theta$
$\therefore \theta=90^{\circ}$ તેથી (b - iii)
$(c)$ $|\overrightarrow{ A } \times \overrightarrow{ B }|= AB \sin \theta$
$\therefore 4=2 \times 4 \times \sin \theta$
$\therefore \frac{1}{2}=\sin \theta$
$\therefore \theta=30^{\circ}$ તેથી $(c-i)$
$(d)$ $|\vec{A} \times \vec{B}|=A B \sin \theta$
$\therefore 4 \sqrt{2}=2 \times 4 \times \sin \theta$
$\therefore \frac{1}{\sqrt{2}}=\sin \theta$
$\therefore \theta=45^{\circ}$ તેથી $(d-ii)$
બે સદિશના સદિશ ગુણાકારની વ્યાખ્યા લખો.
બે સદીશો $\vec A= 3\hat i + \,\hat j\,$ અને $\vec B= \hat j + \,2\hat k$ આપેલા છે તો આ બે સદીશો માટે $\vec A$ અને $\vec B$ સમાંતરબાજુ ચતુષ્કોણની બે એકરૂપ બાજુઓ હોય તો તેના ક્ષેત્રફળનું મૂલ્ય શોધો.
દર્શાવો કે સદિશો $a$ અને $b$ થી બનેલ ત્રિકોણનું ક્ષેત્રફળ એ $a \times b$ ના મૂલ્યથી અડધું હોય છે.
$\mathop {\rm{A}}\limits^ \to $અને $\mathop {\rm{B}}\limits^ \to $એ સદિશો છે. નીચે આપેલા પૈકી કયું વિધાન ખોટું છે ?
$\overrightarrow A = 3\hat i + \hat j + 2\hat k$ અને $\overrightarrow B = 2\hat i - 2\hat j + 4\hat k$ હોય,તો$|\overrightarrow A \times \overrightarrow B |\,$