What is the angle between $\vec A\,\,$ and $\vec B\,\,$ if $\vec A\,\,$ and $\vec B\,\,$ are the adjacent sides of a parallelogran drawn from a common point and the area of the parallelogram is $\frac {AB}{2}$
$\frac {\pi }{3}$
$\frac {\pi }{6}$
$\frac {\pi }{2}$
$\pi $
What is the product of two vectors if they are parallel or antiparallel ?
The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$
Colum $I$ | Colum $II$ |
$(A)$ $x-$axis | $(p)$ $5\,unit$ |
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ | $(q)$ $4\,unit$ |
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ | $(r)$ $0$ |
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ | $(s)$ None |
The area of the parallelogram represented by the vectors $\overrightarrow A = 2\hat i + 3\hat j$ and $\overrightarrow B = \hat i + 4\hat j$ is.......$units$