If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ | $(i)$ $\theta = \,{0^o}$ |
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ | $(ii)$ $\theta = \,{90^o}$ |
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ | $(iii)$ $\theta = \,{180^o}$ |
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ | $(iv)$ $\theta = \,{60^o}$ |
Given $|\mathrm{A}|=2$ and $|\mathrm{B}|=4$
$(a)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=0$
$\therefore \quad 2 \times 4 \cos \theta=0$
$\therefore \quad \cos \theta=0=\cos 90^{\circ}$
$\therefore \quad \theta=90^{\circ}$
$\therefore$ Option $(a)$ matches with option $(ii)$.
$(b)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=8$
$\therefore 2 \times 4 \cos \theta=8$
$\therefore \quad \cos \theta=1=\cos 0^{\circ}$
$\therefore \quad \theta=0^{\circ}$
$\therefore$ Option $(b)$ matches with option $(i)$.
$(c)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=4$
$\therefore \quad 2 \times 4 \cos \theta=4$ $\therefore \quad \cos \theta=\frac{1}{2}=\cos 60^{\circ}$ $\therefore \quad \theta=60^{\circ}$
$\therefore$ Option $(c)$ matches with option $(iv)$.
$(d)$ $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=-8$
$\therefore \quad 2 \times 4 \cos \theta=-8$
$\therefore \quad \cos \theta=-1=\cos 180^{\circ}$
$\therefore \quad \cos \theta=180^{\circ}$
Option $(d)$ matches with option $(iii)$.
Dot product of two mutual perpendicular vector is
If $\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) \;m$ and $\overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k })\; m$. The magnitude of component of vector $\overrightarrow{ A }$ along vector $\vec{B}$ will be $......m$.
Colum $I$ | Colum $II$ |
$(A)$ $(A+B)$ | $(p)$ North-east |
$(B)$ $(A-B)$ | $(q)$ Vertically upwards |
$(C)$ $(A \times B)$ | $(r)$ Vertically downwards |
$(D)$ $(A \times B) \times(A \times B)$ | $(s)$ None |
If $|\vec A \times \vec B| = \sqrt 3 \vec A.\vec B,$ then the value of$|\vec A + \vec B|$ is
If two vectors $\vec{P}=\hat{i}+2 m \hat{j}+m \hat{k}$ and $\vec{Q}=4 \hat{i}-2 \hat{j}+ mk$ are perpendicular to each other. Then, the value of $m$ will be :