If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0),$ then show that $a, b, c$ and $d$ are in $G.P.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that,

$\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}$

$\Rightarrow(a+b x)(b-c x)=(b+c x)(a-b x)$

$\Rightarrow a b-a c x+b^{2} x-b c x^{2}=a b-b^{2} x+a c x-b c x^{2}$

$\Rightarrow 2 b^{2} x=2 a c x$

$\Rightarrow b^{2}=a c$

$\Rightarrow \frac{b}{a}=\frac{c}{b}$          .........$(1)$

Also, $\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}$

$\Rightarrow(b+c x)(c-d x)=(b-c x)(c+d x)$

$\Rightarrow b c-b d x+c^{2} x-c d x^{2}=b c+b d x-c^{2} x-c d x^{2}$

$\Rightarrow 2 c^{2} x=2 b d x$

$\Rightarrow c^{2}=b d$

$\Rightarrow \frac{c}{d}=\frac{d}{c}$       .........$(2)$

From $(1)$ and $(2),$ we obtain

$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$

Thus, $a, b, c$ and $d$ are in $G.P.$

Similar Questions

Consider two G.Ps. $2,2^{2}, 2^{3}, \ldots$ and $4,4^{2}, 4^{3}, \ldots$ of $60$ and $n$ terms respectively. If the geometric mean of all the $60+n$ terms is $(2)^{\frac{225}{8}}$, then $\sum_{ k =1}^{ n } k (n- k )$ is equal to.

  • [JEE MAIN 2022]

The sum of an infinite geometric series is $3$. A series, which is formed by squares of its terms, have the sum also $3$. First series will be

If $a _{1}(>0), a _{2}, a _{3}, a _{4}, a _{5}$ are in a G.P., $a _{2}+ a _{4}=2 a _{3}+1$ and $3 a _{2}+ a _{3}=2 a _{4}$, then $a _{2}+ a _{4}+2 a _{5}$ is equal to

  • [JEE MAIN 2022]

If three geometric means be inserted between $2$ and $32$, then the third geometric mean will be

The sum of an infinite geometric series with positive terms is $3$ and the sum of the cubes of its terms is $\frac {27}{19}$. Then the common ratio of this series is

  • [JEE MAIN 2019]