The sum of an infinite geometric series is $3$. A series, which is formed by squares of its terms, have the sum also $3$. First series will be

  • A

    $\frac{3}{2},\frac{3}{4},\frac{3}{8},\frac{3}{{16}},.....$

  • B

    $\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{{16}},.....$

  • C

    $\frac{1}{3},\frac{1}{9},\frac{1}{{27}},\frac{1}{{81}},.....$

  • D

    $1, - \frac{1}{3},\,\frac{1}{{{3^2}}}, - \frac{1}{{{3^3}}},.....$

Similar Questions

Insert two numbers between $3$ and $81$ so that the resulting sequence is $G.P.$

Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.

If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to 

  • [JEE MAIN 2020]

Consider two G.Ps. $2,2^{2}, 2^{3}, \ldots$ and $4,4^{2}, 4^{3}, \ldots$ of $60$ and $n$ terms respectively. If the geometric mean of all the $60+n$ terms is $(2)^{\frac{225}{8}}$, then $\sum_{ k =1}^{ n } k (n- k )$ is equal to.

  • [JEE MAIN 2022]

Given $a_1,a_2,a_3.....$ form an increasing geometric progression with common ratio $r$ such that $log_8a_1 + log_8a_2 +.....+ log_8a_{12} = 2014,$ then the number of ordered pairs of integers $(a_1, r)$ is equal to

If $a, b, c$ and $d$ are in $G.P.$ show that:

$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$