If three geometric means be inserted between $2$ and $32$, then the third geometric mean will be
$8$
$4$
$16$
$12$
Let $a_{1}, a_{2}, a_{3}, \ldots$ be a G.P. such that $a_{1}<0$; $a_{1}+a_{2}=4$ and $a_{3}+a_{4}=16 .$ If $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ then $\lambda$ is equal to
If $p,\;q,\;r$ are in one geometric progression and $a,\;b,\;c$ in another geometric progression, then $cp,\;bq,\;ar$ are in
Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{px}^2+\mathrm{qx}-$ $r=0$, where $p \neq 0$. If $p, q$ and $r$ be the consecutive terms of a non-constant G.P and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^2$ is :
Let $a_{n}$ be the $n^{\text {th }}$ term of a G.P. of positive terms.
If $\sum\limits_{n=1}^{100} a_{2 n+1}=200$ and $\sum\limits_{n=1}^{100} a_{2 n}=100,$ then $\sum\limits_{n=1}^{200} a_{n}$ is equal to
The remainder when the polynomial $1+x^2+x^4+x^6+\ldots+x^{22}$ is divided by $1+x+x^2+x^3+\ldots+x^{11}$ is